

Lecturer: Dr John McGowan & Dr Balandino Di Donato

Edinburgh Napier University
CSI08104 – Intermediate
Interactive Audio
Technical Notes

Max Torras Figuerola
31-12-2411
 Words: 4442

40446951 CSI08104 – Intermediate Interactive Audio

1

Contents

Introduction .. 2

Library SFX .. 3

Day Ambience .. 3

Night Ambience .. 4

Pavement Footsteps .. 4

Water Footsteps ... 5

Sand Footsteps .. 6

Artificial Lake Shore. .. 6

Dialogue ... 6

Sound FX ... 6

Environment Sound Design ... 7

Event Sound Design .. 9

Play and Stop Events ... 9

SoundBanks ... 9

Switches and Footsteps ... 10

Attenuation and Permanent Sounds .. 11

Triggered Sounds. .. 12

Collisions .. 12

Character ... 13

Event List ... 13

Interactive Music .. 14

Vertical Music ... 14

Horizontal Music ... 15

Interactive Mix .. 16

RTPC ... 16

Reverb Zones ... 16

Audio Buses ... 16

Game Engine Integration ... 17

Scripts .. 17

Video Captured Gameplay ... 17

Transcription .. 18

Annex 1. Library Sources ... 19

Annex 2. Scripts ... 24

40446951 CSI08104 – Intermediate Interactive Audio

2

Introduction

This project is based on the integration of Wwise and Unity and designing
interactive audio for a video game level. In this case, the level chosen is the
Courtyard, from the free Unity assets. The final idea of this project was to create
an immersive and realistic scene in a desert-based temple, where the character
does not know where to go or what to do so that it can explore the whole world.
Non-repetitive sounds are essential to make the game immersive and authentic,
even if the player stays in the world long. The technical notes will cover everything
done during the process of the project.

40446951 CSI08104 – Intermediate Interactive Audio

3

Library SFX

Most of the sounds that have been used are recorded by myself with an
H5 Zoom Handy recorder. Others, though, have been extracted from
freesounds.org or handed by module teachers. A list of all the sounds and the
correspondent sources will be found at the end of the technical notes as an
annex. With most of the sounds used, after sourcing them appropriately, they
have been imported into a Pro Tools session to edit before importing them into
the Wwise Project.

Day Ambience

For the day ambience it has been created a loop with an audio given by
the module teacher. To do that, the clip has been split and swapped to match the
loop. To complement the background loop, it has been created some wind noises
with my own voice near to a Rode NT1A Rode Microphone. After that, for the day
elements, it has been used some different African parrot sounds, leopard roaring
sounds, and a crackling stick sound, which has been split to randomize them
afterward. On the parrot sounds, an EQ has been used to remove low and high
frequencies

40446951 CSI08104 – Intermediate Interactive Audio

4

Night Ambience

For the Night Ambience it has done approximately the same as for the day
ambience, changing the looping clip. A part of that, two animal sounds have been
used in the night ambience, which are a bat flapping and an owl. On the owl clips,
it has been used a pitch shift add some variation in the ambience, and some
reverb to make it more natural.

Pavement Footsteps

For the pavement footsteps, it has been recorded me at home, which there
is a pavement floor that fits perfectly with the floor in the game. It has been
recorded a long clip and then split in ProTools to create different sounds and
make the footsteps more real inside the game with randomization. It has been
added an iZotope plug-in named RX7 Voice De-Noise to remove unwanted
noises. This plug-in has been used in all the footsteps.

40446951 CSI08104 – Intermediate Interactive Audio

5

.

It has also been added some fades afterward to remove clipping and
noises.

Water Footsteps

For the water footsteps, the procedure has been the same as with the
pavement footsteps. The only thing that has changed is that these footsteps have
been recorded inside a bath to simulate an artificial lake. It has also been added
the iZotope plug-in with the same settings.

40446951 CSI08104 – Intermediate Interactive Audio

6

Sand Footsteps

The same method has been used for the footsteps on the sand. In this
case, though, the audio is from freesound.org, and it is a long clip split and stretch
for the running effect.

Artificial Lake Shore.

For the artificial lake waves, it has been tried to recreate the waves using
a bath and creating some manual waves. No side effect has been implemented
to this clip in ProTools.

Dialogue

For the dialogue in this project, it has been decided not to record any
dialogue properly, but instead, it has been added some goat sounds, simulating
any chat. This is done because it has been thought that the game it is easy
enough to figure it out what to do.

Sound FX

Finally, for the library SFX, it has been added the sound effects. In this
project, there are a total of four sound effects for different purposes. Two of them
are used for the collection system, one for tension using a heartbeat, and the last
one is some fluorescent lights to create ambience in the game.

40446951 CSI08104 – Intermediate Interactive Audio

7

Environment Sound Design

These are all the audio clips that have been used to create the day-night
cycle in Wwise to create a perfect environment for the game. There are about 50
sounds, including animal sounds, background loops and other effects. Each
animal and sound effect (wind and stick break) has been grouped up into a
random container to randomize their sounds. After that, the day elements have
been grouped again into a blend container so they can be played at the same
time, and the same it has been done with the night elements. For the day
background loop, the background audio has been blended with the wind random
container and all ttogether has been integrated with the day elements to create
the final day ambience.

For the night ambience has been done pretty much the same but with
different animals understanding that there are not the same animals during the
day and the night. Some research has been done to find which animals can live
in arid areas. To finish the night ambience, the background loop and all the
elements blended together have been grouped again into a blender container.

To make the ambience sound continuously it has to be checked the Loop
box in the background sounds, also checking the infinite option. On the blend and
random containers, the play mode has to be continuous and looping infinitely. It

40446951 CSI08104 – Intermediate Interactive Audio

8

has to be checked in all the containers, so it will be no sound gaps while playing
the game after a while. Also, some silences have been added in different random
containers to make it not sound all together and space up all the sounds. An
example of this is attached here, and all the random containers will be pretty
much the same excepting the weight, which is the percentage of probability that
sound will play, the voice volume, the voice pitch or the voice Low-pass filter.

To wrap up the environment, both day and night cycles have been grouped
into another blend container named amb_day_night. To create a full cycle, it has
been created a Game Parameter in the Game Syncs tab called Time_Of_Day in
which the range is between 0 and 1 to match the numbers in Unity, where 0 (and
1) is supposed to be midnight. To create the cycle, it has been used a crossfade
and tried to match the light cycle in unity with the Wwise sounds.

Jumping to Unity, to complete the day-night cycle both in Wwise and Unity,
it has been modified the sun properties Script (will be added on an Annex) to add
the Wwise blended sounds to match the light level and the sun position. The line
added is the number 47 and it has been added this:

AkSoundEngine.SetRTPCValue("Time_Of_Day", time);

40446951 CSI08104 – Intermediate Interactive Audio

9

Event Sound Design

Play and Stop Events

Setting up any event in Wwise allows to trigger the
container that hold the game sounds. If a sound wants to be
played into the Unity engine, it must be activated or triggered
by an event named play. It can also be created stop events
which when they will be triggered the sound attached to it will
stop playing. This can be useful when the character leaves an
area and a sound wants to stop playing.

To be more organised and being able to select which sound wants to be
played, it is suggested to create Work Units, and the number of events will
depend on how many sounds have been created in the Wwise project, or how
many are wanted to be into the game.

For implementing this into Unity, Ak Ambient
scripts must be inserted and attached to the object
desired. In the example below, it has been created an
empty object named Event and inside it, the script has
been added selecting, in this case, Play_amb and
triggering it at the start, so when the game starts, the
ambience sound will start playing regardless of the
position of the character. For a sound being stop, it’s
the same procedure but adding a stop event.

SoundBanks

Once the events are being created, SoundBanks are essential to make the
game work. SoundBanks should be named correctly in accordance with all the
general elements that there are in the Wwise project and events must be inserted
inside the SoundBanks so Unity will know what events can be played. To insert
the events into the SoundBanks, it has to be double-clicked the SoundBank is
wanted and drag the events desired into it.

When all the play and stop events are linked with a SoundBanks, which
can have more than one event inside of it, the project can be exported and linked
directly with Unity. After saving the project, if Shift + B is pressed, a new window
will pop-up and will let it be generated into Unity. This process must be done
every time something new wants to be implemented in the game.

40446951 CSI08104 – Intermediate Interactive Audio

10

These SoundBanks are the most common to use because they will group
all the general elements that it can be created into a game. Once the Generate
All tab is clicked, a log status windows will pop-up and it will tell if there is any
error.

Switches and Footsteps

Footsteps and Switches are a very important part of the sound
implementation and the first ones use the switch containers. It has to be a switch
container for every kind of surface in the game, and inside those, one for run and
another one for walk, if needed, which is the case of this game. On this project, it

has also been implemented a new container aside
of the Character_Surface named Character_Action which will contain and
detect when the player jumps and lands on the floor. Inside the action container,
there is two different random containers so it will sound different every time the
player jumps or lands. It happens the same with the footsteps, which each
random container has a good number of different footsteps to randomize and be
more immersive.

40446951 CSI08104 – Intermediate Interactive Audio

11

To create the proper Switches, must be head to
the Game Syncs tab and under the Switches folder it
must be created each of the changes that the game will
notice. It is really important that each switch state is
named appropriately for the different floors and
surfaces to be easier in Unity with the script. Once all
the switches are created, the objects have to be
assigned to each group and then the containers have to
be dragged properly.

In unity, each surface must be selected one by
one and it has to be implemented a Script named
Material Switch Controller which will let it change the
surface the character is stepping on. If the name of
the containers does not match the script names, they
must be changed so everything can work. Once all
the surfaces are linked correctly, it can be added a
script into the FPSController object named
Footstep_Collider which will detect when the
character collides with the floor. Again, the name
inside the script must be the same with the one in
Wwise.

Attenuation and Permanent Sounds

Attenuation is a good feature to make the game
look real. It will attenuate a sound over distance, and it
can be used in lights, water, or any diegetic or diegetic
sound. The sounds that are wanted to be attenuated,
need a new parameter, in the ShareSets tab in Wwise
and it has to be created an attenuation element. To link
the attenuation feature into the sound, in the positioning
tab of the sound desired, it can be selected the
attenuation needed. If the distance wants to be edited,

just editing it will let it change the distance or any other parameter.

40446951 CSI08104 – Intermediate Interactive Audio

12

In unity, like in the surface, it has to be added to any object wanted to make
a sound an Ambient Script selecting the correct play event. The same happens
with the water, where another Ambient Script must be added and it will create the
effect of the waves in the distance when the character is far away.

Triggered Sounds.

Another interesting element that can be created is to make a sound
activate when is it triggered with the character entering a delimited zone. To make
this work, a new script has to be added to the FPSController named Distance to
Checkpoint and it will be needed one for every object that needs it. It can be
chosen which object will have the central point, so when the character
approaches this element, it will trigger it. It would be interesting to add a stop
event so when the player leaves the area, it will trigger again, stopping the sound.

Collisions

Once all the ambience and character sounds are inserted and linked
properly, it can be started the object collection system. Any item can be inserted
as the object to collect and they can be found in the Asset Store for free. In this
case, a Japanese coin has been used. In each coin it has been added a mesh
collider so the player can touch the coin and trigger it to activate a script named
Objects to Collect.

Once all the coins are imported, inside
the canvas, which is what the player sees
while playing the game, it can be added an
empty object named ObjectNum and inside
it, it can be added another script named
Count Objects. This last script will show on
the screen how many coins are left to pick
and it will send the player to another scene if
wanted when all the coins are collected.

Another feature added is an NPC character that will activate the coin
research and it will try to interact with the character.

40446951 CSI08104 – Intermediate Interactive Audio

13

Character

It has also been added an NPC character, in this case it is a Goat-Person
character, which it makes the scene a little bit more alive and it will let the player
interact with someone instead of playing alone. The character has been imported
from Mixamo, a website where characters and animations can be downloaded
for free.

Here, the NPC is just sitting on a chair having some subtle movements.
When the character is in place, a capsule collider can be added and making it
slightly bigger than the character and checking the trigger box will make trigger
any sound when the player approach it, if it is added the correct Ambience Script.
It can also be added a mesh collider so the player cannot go through the NPC.

Inside the capsule collider it can be added a script named Dialogue Trigger
which will trigger the text named above with the information on how many coins
are left to be pick up.

Event List

The nomenclature in the next list is the following one:

 Event Name (Event type) – Container attached (Container type)

 Ambience
o Play_amb (Play) - amb_day_night (Blender Container)
o Play_waves (Play) - Waves (Sound SFX)

 Character
o Play_Footstep (Play) Character_Surface (Switch Container)
o Play_Jump (Play) - Character_Jump (Random Container)
o Play_Land (Play) - Character_Land (Random Container)

 Dialogue
o Play_Dialogue (Play) - GOAT (Random Container)

 Music
o Play_Music (Play) - Music_System (Music Switch Container)
o Stop_Music (Stop) -Music_System (Music Switch Container)

 SFX
o Play_Heartbeat (Play) – HeartBeat (Sound SFX)

40446951 CSI08104 – Intermediate Interactive Audio

14

o Play_Lights (Play) – Lights (Sound SFX)
o Play_PickUp (Play) – Collect (Sound SFX)
o Play_End_Game – Congrats_UpBeat (Sound SFX)

Interactive Music

There are basically two different music approaches, vertical and
horizontal, which will be explained in a moment. It is essential to create, in the
Game Syncs tab, a state for each music container, and renamed appropriately.
Once all the audios are imported, and the states are created, it can be linked
each container with the state wanted pressing F10 to enter the Interactive Music
Layout and there, the states can be seen and it can be added a path to the
correspondent sound.

Vertical Music

Vertical Music means that all the tracks will play the same level no matter
where the character is. It is useful to support the ambience. When the playlist
containers are created, in each of it, it can be added one or more separate tracks
which will have to be selected and imported inside the container.

Once the desired tracks are in, clicking the playlist container, and using
the Interactive Music Layout (F10), it can be chosen between multiple options
on how to reproduce the tracks. It can be either a sequence or random, and
continuous and stepped. After choosing the option desired, the track has to be
dragged under it so Wwise will know what to play. In this project, all the vertical
music tracks have been extracted from royalty free websites like
freemusicarchive.com. If it is wanted to add 2 or more tracks inside the same
playlist container, it is as easier as just drag all the tracks wanted.

40446951 CSI08104 – Intermediate Interactive Audio

15

To integrate this into unity, it has to be
created a game object named Sound and inside of
it, it can be created as many empty objects as
wanted, for as many music zones are desired.

In this case, it has been created 5 empty
objects for the vertical music. In each of this it has
been added a box collider, checking the trigger box,
and resizing it to the zone desired. It has also need
to be created an AkState script and selecting to
trigger it on entering, it needs to be selected the
proper state, or, in this case, the appropriated
music container. In one of them, it has to be added
an Ambient script to start running the music.

It can also be added another state script
triggering it on exiting the zone, with a no music
state. With all of this, it can be created as many
zones as desired with as many tracks as wanted.

Horizontal Music

Horizontal music has a similar approach with vertical music but, in this
case, the tracks can be complementary, meaning that they can be played one
above the other. In this project, the tracks have been given by the module
teacher, and there is a piano, a choir and a sitar.

A game parameter is needed to create this effect and it has been named
Music_Tension with a range of 100. To implement this parameter, it just needs to
be added in the Real Time Parameter Controller (RTPC) tab in each of the music
segments. A graphic will pop-up and there it can be adjusted the distance, the
line or any other parameter. To make it more realistic, instead of using a linear
line, it has been used a logarithmic (Base 3).

Each instrument or track have a different starting point to they will start
playing in a different distance from the character.

40446951 CSI08104 – Intermediate Interactive Audio

16

Once all the tracks are edited and can be exported into Unity, using the
SoundBanks, another game object has to be created with the same, a box collider
and a state script selecting the proper state and triggering on entering the zone.

The different thing of the horizontal music is that after inserting the music
into unity, it has to be created a new script named Distance to Checkpoint where
it must be chosen the object where the music it is going to be in its peak. If there
is more than one horizontal music track this new script has to be added again
choosing the appropriate object.

Interactive Mix

RTPC

As mentioned before, RTPC stand for Real Time Parameter Controller,
and what they do is control different parameters such distance, pitch or frequency
and with an X-Y graphic, it can be chosen what to do, for example, if it is wanted
to increase or decrease the volume as the character goes far or near from a
specific object.

Reverb Zones

Wwise Engine also has a Master mixer
where buses can be added. There are two kinds
of buses available, which are the auxiliar bus,
that is it used for the reverb zones, and the audio
buses, that will be explained below. Auxiliar
buses in this project have been used to create a
reverb zone in specific chambers in the game.
To create this effect, under the effect tab, it can
be added a reverb plug-in integrated with Wwise,
and it has been adjusted so it is not that subtle.

To implement this into Unity, each chamber already has a music zone box
and inside these game objects, it has been added an Environment Script where
it can be selected the correct auxiliary bus.

Audio Buses

In the same Master mixer folder, it can be created audio buses for each
work unit if possible, and when selecting the most general container in each work
unit, it can be chosen in the output bus, the audio bus desired.

When all the containers are inside an audio bus, it can be headed to the
Mixing Layout (F8) where, even if it is slowly to do, it can be created as many
mixing sessions as wanted. In each mixing session it has to be dragged all the
containers wanted and there they can be adjusted like a mixing desk. After that,
it can be done the same with a soundcaster where it will let play the sounds
separately or all together.

40446951 CSI08104 – Intermediate Interactive Audio

17

In this project, it has been created six mixing desks, one for each work unit
and a last one for all the audio buses to have the control over all of them.

In this project it has been used auto-ducking to minimize the ambience and
the music sounds when the NPC is chatting.

Game Engine Integration

Scripts

All the scripts used for this project it has been given by the module
teachers, and it will be an annex with all of them.

Video Captured Gameplay

The week before the deadline, a five-minutes video has been recorded to
show all the features in the game. This video has been captured with OBS
Recorder and the voice over it has been recorded using Pro Tools and a NT1-A
Microphone. It has been a lot of problems with the recordings because the
computer used is it not the best to do it. Even though the fps are not great, the
video shows the work done. If after writing these technical notes, the video can
be upgraded, it will be better in the blog below.

The blog is posted in my personal webpage where all the projects are
shown. This is the link: https://max13torras.wixsite.com/website/intermediate-
interactive-audio

40446951 CSI08104 – Intermediate Interactive Audio

18

Transcription

Welcome, my name is Max and this is my Intermediate Interactive Audio,
integrating Wwise and Unity engines. When the game is started, it is near
midnight, so we can hear a lot of animals who live in the desert. We appear in the
top of a building, so we will have to go down somehow. Luckily, we can just jump
down. When we arrive down, we can start hearing a heart beat and there is no
sign of where it comes from. We will take care of that in a moment, but first we
should talk with the character sitting in a chair. It tells us, in its language, to collect
5 coins. We do not know where are they, so we have to start exploring. While we
explore, we can hear a lot of different sounds coming from various sounds. One
of the most important sounds are the footsteps on the pavement, which will
change if the character is running or walking. If we jump, we can hear some
noises doing some effort, both jumping and landing. When we enter a chamber,
the footsteps sounds will change to be with some reverb, making entering the
chamber more realistic. We could find a coin here, so when we pick it up, a sound
will pop telling us that we collected the coin. Some music will also be heard time
by time, which is it supposed to be triggered when entering the chamber. When
it is day time, we can explore outside, on the sand where we can hear a different
footsteps sound, matching the proper surface. Outside, there is nothing especial,
but we can see the cactus which will make the ambience sounds real because,
as there is some greenery, animals can live somewhere. The ambience sounds
are a mix of a background loop sounds and some animals sounds that will change
during day and night. Making a whole round on the temple, will make us notice a
coin at the beginning approximately, and also the heart beat again. If we go to
the sound, we will see that it comes from near a chair, to make us understand
that we are getting anxious. Another coin can be found on the stairs near the lake.
If we want to enter the lake, which we must to collect another coin we can hear
the last footsteps sounds when we walk on water. Supposedly, when we enter
the lake, we should start hearing a mysterious song that will bring us the top of
the pyramid, where there is a magical chair standing there. We do not know what
is it, so we should better let it there. Finally, if we go on top and look around, we
can see the last coin on the roof so we can try to make some parkour to get there.

First, though, it is important to point that all the artificial lights in the scene
have their own sound, attenuating when the character goes further from them,
and in every chamber, there is some reverb. As you can see, when we collect the
last coin, we will be transported to another dimension, making and upbeat sound
to congratulate that we collected all the coins. After finishing this project and
recording the video there is some issues with the music that sometimes it does
not trigger appropriately.

40446951 CSI08104 – Intermediate Interactive Audio

19

Annex 1. Library Sources

Clip Name Source Details Location in Wwise Edits Mixing

amb_wind_01
Wind simulation blowing the
mic

amb_day_background/amb_day_wind
Weight: 25

Voice Volume: -5 dB

amb_wind_02
Wind simulation blowing the
mic

amb_day_background/amb_day_wind
Weight: 25

Voice Volume: -3 dB

amb_wind_03
Wind simulation blowing the
mic

amb_day_background/amb_day_wind
Weight: 25

Voice Volume: -4 dB

amb_wind_04
Wind simulation blowing the
mic

amb_day_background/amb_day_wind
Weight: 25

Voice Volume: -4 dB

amb_wind_05
Wind simulation blowing the
mic

amb_day_background/amb_day_wind
Weight: 25

Voice Volume: -4 dB
amb_day_loop Arid ambience sound amb_day_background

Parrot_African_1 Bird Whistle
amb_day_elements/amb_day_elements_af
rican_bird

Weight: 30
Voice Volume: -11 dB

Parrot_African_2 Bird Whistle
amb_day_elements/amb_day_elements_af
rican_bird

Weight: 65
Voice Volume: -8 dB

Parrot_African_3 Bird Whistle
amb_day_elements/amb_day_elements_af
rican_bird

Weight: 50
Voice Volume: -13 dB

Parrot_Cockatoo Parrot cuacking
amb_day_elements/amb_day_elements_c
ockatoo

Weight: 50
Voice Volume: -13 dB

Leopard_1 Leopard Roaring
amb_day_elements/amb_day_elements_le
opard

Weight: 9

Leopard_2 Leopard Roaring
amb_day_elements/amb_day_elements_le
opard

Weight: 11

Leopard_3 Leopard Roaring
amb_day_elements/amb_day_elements_le
opard

Weight: 10

Leopard_4 Leopard Roaring
amb_day_elements/amb_day_elements_le
opard

Weight: 23

Stick_Break_1 Stick Breaking
amb_day_elements/amb_day_elements_st
ickbreak

Stick_Break_2 Stick Breaking
amb_day_elements/amb_day_elements_st
ickbreak

Stick_Break_3 Stick Breaking
amb_day_elements/amb_day_elements_st
ickbreak

Stick_Break_4 Stick Breaking
amb_day_elements/amb_day_elements_st
ickbreak

Stick_Break_5 Stick Breaking
amb_day_elements/amb_day_elements_st
ickbreak

Stick_Break_6 Stick Breaking
amb_day_elements/amb_day_elements_st
ickbreak

Stick_Break_7 Stick Breaking
amb_day_elements/amb_day_elements_st
ickbreak

Stick_Break_8 Stick Breaking
amb_day_elements/amb_day_elements_st
ickbreak

Stick_Break_9 Stick Breaking
amb_day_elements/amb_day_elements_st
ickbreak

Stick_Break_10 Stick Breaking
amb_day_elements/amb_day_elements_st
ickbreak

Bat_1 Bat flapping its wings
amb_night_elements/amb_night_elements
_bat

Bat_2 Bat flapping its wings
amb_night_elements/amb_night_elements
_bat

Bat_3 Bat flapping its wings
amb_night_elements/amb_night_elements
_bat

Bat_4 Bat flapping its wings
amb_night_elements/amb_night_elements
_bat

BatFlap_01 Bat flapping its wings slower
amb_night_elements/amb_night_elements
_bat

Weight: 46

BatFlap_02 Bat flapping its wings slower
amb_night_elements/amb_night_elements
_bat

Weight: 45

BatFlap_03 Bat flapping its wings slower
amb_night_elements/amb_night_elements
_bat

Weight: 47

BatFlap_04 Bat flapping its wings slower
amb_night_elements/amb_night_elements
_bat

Weight: 48

Owl_1 Owl Hooting
amb_night_elements/amb_night_elements
_owl

Weight: 10

Owl_2 Parrot cuacking
amb_night_elements/amb_night_elements
_owl

Weight: 9
Voice Pitch: 300

Owl_3 Leopard Roaring
amb_night_elements/amb_night_elements
_owl

Weight: 10
Voice Pitch: -300

Owl_4 Leopard Roaring
amb_night_elements/amb_night_elements
_owl

Weight: 36

Owl_5 Leopard Roaring
amb_night_elements/amb_night_elements
_owl

Weight: 39

Owl_6 Leopard Roaring
amb_night_elements/amb_night_elements
_owl

Weight: 36

amb_night_background Arid nightly background sounds amb_night Voice Volume: -4 dB
amb_night_background

Voice Volume: -4 dB

Waves Small waves crushing Ambient Work Unit
Waves

amb_night_elements
Voice Volume: -8 dB

Library Sounds

Given by the
module teachers

and edited on
Pro Tools

Given by the
module teachers

Rode NT1 - A
mic, recorded

myself

Given by module
teacher

FreeSound.org

Ambient Work Unit

amb_day_background
Voice Volume: -4dB

amb_day_elements
Voice Volume: -9 dB

Clip Name Source Details Location in Wwise Edits Mixing

Jump_01
Jump_02
Jump_03
Jump_04
Land_01
Land_02
Land_03
Land_04
Land_05
RunPavement_1
RunPavement_2
RunPavement_3
RunPavement_4
RunPavement_5
RunPavement_6
RunPavement_7
RunPavement_8
RunPavement_9
RunPavement_10
WalkPavement_1
WalkPavement_2
WalkPavement_3
WalkPavement_4
WalkPavement_5
WalkPavement_6
WalkPavement_7
WalkPavement_8
WalkPavement_9
WalkPavement_10
WalkPavement_11
WalkPavement_12
WalkPavement_13
WalkPavement_14
WalkPavement_15
RunSand_1
RunSand_2
RunSand_3
RunSand_4
RunSand_5
RunSand_6
RunSand_7
RunSand_8
RunSand_9
RunSand_10
RunSand_11
RunSand_12
WalkSand_1
WalkSand_2
WalkSand_3
WalkSand_4
WalkSand_5
WalkSand_6
WalkSand_7
WalkSand_8
WalkSand_9
WalkSand_10
RunWater_1
RunWater_2
RunWater_3
RunWater_4
RunWater_5
RunWater_6
RunWater_7
RunWater_8
WalkWater_1
WalkWater_2
WalkWater_3
WalkWater_4
WalkWater_5
WalkWater_6
WalkWater_7
WalkWater_8
WalkWater_9

Character_Water/Character_Water_Run

H5 Handy Recorded in
my bath

Footsteps in the water

Character_Water/Character_Water_Walk

Voice Volume: 8 dB

H5 Handy Recorder in
a beach

Footsteps in the sand

Character_Sand/Character_Sand_Walk Voice Volume: 6 dB

H5 Handy Recorder at
my house in Sabadell

Footsteps in pavement

Character_Pavement/Character_Pavement_W
alk

Character_Sand/Character_Sand_Run

Character_Pavement/Character_Pavement_Ru
n

Character Work Unit

Voice Volume: 4 dBSimulating a jump effort sound Character_Action/Character_Jump

H2n Zoom recording
my voice

Simulating when you land from a
place

Character_Action/Character_Land

Clip Name Source Details Location in Wwise Edits Mixing RTPC

1_Choir Choir Singing
Music_Tension: Voice Volume
going from +0,0 dB to -200 dB
in 50 units distance

2_Sitar Sitar playing
Music_Tension: Voice Volume
going from +0,0 dB to -200 dB
in 75 units distance

3_BigPno Piano playing
Music_Tension: Voice Volume
going from +0,0 dB to -200 dB
in 100 units distance

XyloBoko African Generic Music Music_System/ Floor1 Volume: -8 dB

SpawnZone
Calm music but with
an african genre

Music_System/SpawnZone Volume: +3 dB

Zone1
Tense Music with
violins

Music_System/Zone1 Volume: -9 dB

Zone2 Asian music Music_System/Zone2 Volume: -14 dB
Zone3 Guitar Asian Music Music_System/Zone3 Volume: -2 dB

Royalty Free music

Volume: -4 dB

Volume: -14 dB

Also there is three
game intensity
parameters not

used.

Given by Module
teachers

Music_System/ Horizontal_Music/
AmbientSegment

Music Work Unit

Clip Name Source Details Location in Wwise Edits Mixing RTPC

Goat_01
Goat_02
Goat_03
Collect Money Picking up SFX Voice Volume: -24 dB
Congrats_UpBeat Upbeat tone SFX Voice Volume: -10 dB

Lights Fluorescent light clipping SFX

Light Attenuation:
Output Volume
decreasing from 15.0 to
0.0 in a Logarithmic
(Base 3) curve

HeartBeat
Given by module

teacher
Just a heartbeat SFX

Time stretch 50
- 100
Output Gain
+48dB - 0 dB

Freesounds Goat Screaming Dialogue/GOAT Voice Volume: -14 dB

SFX & Dialogue Work Unit

40446951 CSI08104 – Intermediate Interactive Audio

24

Annex 2. Scripts

...s\FirstPersonCharacter\Scripts\FirstPersonController.cs 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25

26
27

28

29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

using System;
using UnityEngine;
using UnityStandardAssets.CrossPlatformInput;
using UnityStandardAssets.Utility;
using Random = UnityEngine.Random;

namespace UnityStandardAssets.Characters.FirstPerson
{
 [RequireComponent(typeof (CharacterController))]
 [RequireComponent(typeof (AudioSource))]
 public class FirstPersonController : MonoBehaviour
 {
 [SerializeField] private bool m_IsWalking;
 [SerializeField] private float m_WalkSpeed;
 [SerializeField] private float m_RunSpeed;
 [SerializeField] [Range(0f, 1f)] private float m_RunstepLenghten;
 [SerializeField] private float m_JumpSpeed;
 [SerializeField] private float m_StickToGroundForce;
 [SerializeField] private float m_GravityMultiplier;
 [SerializeField] private MouseLook m_MouseLook;
 [SerializeField] private bool m_UseFovKick;
 [SerializeField] private FOVKick m_FovKick = new FOVKick();
 [SerializeField] private bool m_UseHeadBob;
 [SerializeField] private CurveControlledBob m_HeadBob = new

CurveControlledBob();
 [SerializeField] private LerpControlledBob m_JumpBob = new

LerpControlledBob();
 [SerializeField] private float m_StepInterval;
 [SerializeField] private AudioClip[] m_FootstepSounds; // an array

of footstep sounds that will be randomly selected from.
 [SerializeField] private AudioClip m_JumpSound; // the sound

 played when character leaves the ground.
 [SerializeField] private AudioClip m_LandSound; // the sound

 played when character touches back on ground.

 private Camera m_Camera;
 private bool m_Jump;
 private float m_YRotation;
 private Vector2 m_Input;
 private Vector3 m_MoveDir = Vector3.zero;
 private CharacterController m_CharacterController;
 private CollisionFlags m_CollisionFlags;
 private bool m_PreviouslyGrounded;
 private Vector3 m_OriginalCameraPosition;
 private float m_StepCycle;
 private float m_NextStep;
 private bool m_Jumping;
 private AudioSource m_AudioSource;

 // Use this for initialization
 public void Start()
 {
 m_CharacterController = GetComponent<CharacterController>();
 m_Camera = Camera.main;
 m_OriginalCameraPosition = m_Camera.transform.localPosition;
 m_FovKick.Setup(m_Camera);

...s\FirstPersonCharacter\Scripts\FirstPersonController.cs 2
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

102
103

 m_HeadBob.Setup(m_Camera, m_StepInterval);
 m_StepCycle = 0f;
 m_NextStep = m_StepCycle/2f;
 m_Jumping = false;
 m_AudioSource = GetComponent<AudioSource>();
 m_MouseLook.Init(transform , m_Camera.transform);
 }

 // Update is called once per frame
 private void Update()
 {
 RotateView();
 // the jump state needs to read here to make sure it is not missed
 if (!m_Jump)
 {
 m_Jump = CrossPlatformInputManager.GetButtonDown("Jump");
 }

 if (!m_PreviouslyGrounded && m_CharacterController.isGrounded)
 {
 StartCoroutine(m_JumpBob.DoBobCycle());
 PlayLandingSound();
 m_MoveDir.y = 0f;
 m_Jumping = false;
 }
 if (!m_CharacterController.isGrounded && !m_Jumping &&

m_PreviouslyGrounded)
 {
 m_MoveDir.y = 0f;
 }

 m_PreviouslyGrounded = m_CharacterController.isGrounded;
 }

 private void PlayLandingSound()
 {
 //m_AudioSource.clip = m_LandSound;
 //m_AudioSource.Play();
 AkSoundEngine.PostEvent ("Play_Land", gameObject);
 //m_NextStep = m_StepCycle + .5f;
 }

 private void FixedUpdate()
 {
 float speed;
 GetInput(out speed);
 // always move along the camera forward as it is the direction

that it being aimed at
 Vector3 desiredMove = transform.forward*m_Input.y +

transform.right*m_Input.x;

 // get a normal for the surface that is being touched to move
along it

...s\FirstPersonCharacter\Scripts\FirstPersonController.cs 3
104
105

106

107

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

128
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

149
150

151
152

 RaycastHit hitInfo;
 Physics.SphereCast(transform.position,

m_CharacterController.radius, Vector3.down, out hitInfo,
 m_CharacterController.height/2f,

Physics.AllLayers, QueryTriggerInteraction.Ignore);
 desiredMove = Vector3.ProjectOnPlane(desiredMove,

hitInfo.normal).normalized;

 m_MoveDir.x = desiredMove.x*speed;
 m_MoveDir.z = desiredMove.z*speed;

 if (m_CharacterController.isGrounded)
 {
 m_MoveDir.y = -m_StickToGroundForce;

 if (m_Jump)
 {
 m_MoveDir.y = m_JumpSpeed;
 PlayJumpSound();
 m_Jump = false;
 m_Jumping = true;
 }
 }
 else
 {
 m_MoveDir +=

Physics.gravity*m_GravityMultiplier*Time.fixedDeltaTime;
 }
 m_CollisionFlags = m_CharacterController.Move

(m_MoveDir*Time.fixedDeltaTime);

 ProgressStepCycle(speed);
 UpdateCameraPosition(speed);

 m_MouseLook.UpdateCursorLock();
 }

 private void PlayJumpSound()
 {
 //m_AudioSource.clip = m_JumpSound;
 //m_AudioSource.Play();
 AkSoundEngine.PostEvent ("Play_Jump", gameObject);
 }

 private void ProgressStepCycle(float speed)
 {
 if (m_CharacterController.velocity.sqrMagnitude > 0 &&

(m_Input.x != 0 || m_Input.y != 0))
 {
 m_StepCycle += (m_CharacterController.velocity.magnitude +

(speed*(m_IsWalking ? 1f : m_RunstepLenghten)))*
 Time.fixedDeltaTime;
 }

...s\FirstPersonCharacter\Scripts\FirstPersonController.cs 4
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

192
193
194

195

196
197

198
199
200
201
202

203

 if (!(m_StepCycle > m_NextStep))
 {
 return;
 }

 m_NextStep = m_StepCycle + m_StepInterval;

 PlayFootStepAudio();
 }

 private void PlayFootStepAudio()
 {
 if (!m_CharacterController.isGrounded)
 {
 return;
 }

 AkSoundEngine.PostEvent ("Play_Footstep", gameObject);
 // pick & play a random footstep sound from the array,
 // excluding sound at index 0
 //int n = Random.Range(1, m_FootstepSounds.Length);
 //m_AudioSource.clip = m_FootstepSounds[n];
 //m_AudioSource.PlayOneShot(m_AudioSource.clip);
 // move picked sound to index 0 so it's not picked next time
 //m_FootstepSounds[n] = m_FootstepSounds[0];
 //m_FootstepSounds[0] = m_AudioSource.clip;
 }

 private void UpdateCameraPosition(float speed)
 {
 Vector3 newCameraPosition;
 if (!m_UseHeadBob)
 {
 return;
 }
 if (m_CharacterController.velocity.magnitude > 0 &&

m_CharacterController.isGrounded)
 {
 m_Camera.transform.localPosition =
 m_HeadBob.DoHeadBob

(m_CharacterController.velocity.magnitude +
 (speed*(m_IsWalking ? 1f :

m_RunstepLenghten)));
 newCameraPosition = m_Camera.transform.localPosition;
 newCameraPosition.y = m_Camera.transform.localPosition.y -

m_JumpBob.Offset();
 }
 else
 {
 newCameraPosition = m_Camera.transform.localPosition;
 newCameraPosition.y = m_OriginalCameraPosition.y -

m_JumpBob.Offset();
 }

...s\FirstPersonCharacter\Scripts\FirstPersonController.cs 5
204
205
206
207
208
209
210
211

212
213
214
215
216
217

218

219
220
221
222
223
224
225
226
227
228
229
230
231
232

233

234
235
236

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

 m_Camera.transform.localPosition = newCameraPosition;
 }

 private void GetInput(out float speed)
 {
 // Read input
 float horizontal = CrossPlatformInputManager.GetAxis

("Horizontal");
 float vertical = CrossPlatformInputManager.GetAxis("Vertical");

 bool waswalking = m_IsWalking;

#if !MOBILE_INPUT
 // On standalone builds, walk/run speed is modified by a key

press.
 // keep track of whether or not the character is walking or

running
 m_IsWalking = !Input.GetKey(KeyCode.LeftShift);
#endif
 // set the desired speed to be walking or running
 speed = m_IsWalking ? m_WalkSpeed : m_RunSpeed;
 m_Input = new Vector2(horizontal, vertical);

 // normalize input if it exceeds 1 in combined length:
 if (m_Input.sqrMagnitude > 1)
 {
 m_Input.Normalize();
 }

 // handle speed change to give an fov kick
 // only if the player is going to a run, is running and the

fovkick is to be used
 if (m_IsWalking != waswalking && m_UseFovKick &&

m_CharacterController.velocity.sqrMagnitude > 0)
 {
 StopAllCoroutines();
 StartCoroutine(!m_IsWalking ? m_FovKick.FOVKickUp() :

m_FovKick.FOVKickDown());
 }
 }

 private void RotateView()
 {
 m_MouseLook.LookRotation (transform, m_Camera.transform);
 }

 private void OnControllerColliderHit(ControllerColliderHit hit)
 {
 Rigidbody body = hit.collider.attachedRigidbody;
 //dont move the rigidbody if the character is on top of it
 if (m_CollisionFlags == CollisionFlags.Below)
 {
 return;

...s\FirstPersonCharacter\Scripts\FirstPersonController.cs 6
254
255
256
257
258
259
260

261
262
263
264

 }

 if (body == null || body.isKinematic)
 {
 return;
 }
 body.AddForceAtPosition(m_CharacterController.velocity*0.1f,

hit.point, ForceMode.Impulse);
 }
 }
}

...madiate Interactive Audio\TechNotes\ObjectsToCollect.cs 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class ObjectsToCollect : MonoBehaviour
{
 public static int objects = 0;
 // Use this for initialization
 // let the count objects script know that this object is
 // part of the collection and should be counted
 void Awake()
 {
 objects++;
 }

 // Update is called once per frame
 void OnTriggerEnter(Collider plyr)
 {
 //if the tagged FPSController 'Player' collides with an object, take it

 away from the total
 if (plyr.gameObject.tag == "Player"){
 objects--;
 AkSoundEngine.PostEvent("Play_PickUp", gameObject);
 gameObject.SetActive(false);
 }
 }
}

...Interactive Audio\TechNotes\MaterialSwitchController.cs 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class MaterialSwitchController : MonoBehaviour {

 public enum Mode {Pavement, Sand, Water}
 public Mode terrainType;

 // Use this for initialization
 void Start () {

 }

 // Update is called once per frame
 void Update () {

 }

 public string GetTerrainType(){

 string typeString = "";

 switch (terrainType) {

 case Mode.Pavement:
 typeString = "Pavement";
 break;
 case Mode.Sand:
 typeString = "Sand";
 break;
 case Mode.Water:
 typeString = "Water";
 break;

 }

 Debug.Log (typeString);
 return typeString;

 }
}

...e Interactive Audio\TechNotes\DistanceToCheckpoint-2.cs 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

18

19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityStandardAssets.CrossPlatformInput;
using UnityStandardAssets.Utility;
using Random = UnityEngine.Random;

public class DistanceToCheckpoint : MonoBehaviour
{
 public string RTCPValue = "HeartBeat";

 // Reference to checkpoint position
 [SerializeField]
 private Transform checkpoint;

 //Serialization is the process of taking an object in ram (classes, fields,
 etc...)

 //and making a disk representation of it which can be recreated at any
point in the future.

 // Calculated distance value
 private float distance;

 // Update is called once per frame
 void Update ()
 {
 // calculate distance value between character and checkpoint
 distance = (checkpoint.transform.position -

transform.position).magnitude;

 // set parameter from Wwise game parameter to scaled distance value
 AkSoundEngine.SetRTPCValue(RTCPValue, distance);

 Debug.Log(message: RTCPValue + distance);

 }
}

...rmadiate Interactive Audio\TechNotes\DialogueTrigger.cs 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class DialogueTrigger : MonoBehaviour
{
 GameObject objUI2;

 private bool audioIsPlaying = false;
 // Start is called before the first frame update
 void Start()
 {
 objUI2 = GameObject.Find("ObjectNum");
 //objUI2.SetActive(false);
 }

 // Update is called once per frame
 void Update()
 {

 }

 void OnTriggerEnter(Collider plyr)
 {
 if (plyr.gameObject.tag == "Player" && !audioIsPlaying){
 AkSoundEngine.PostEvent("Play_dialogue", gameObject);
 audioIsPlaying = true;
 objUI2.SetActive(true);
 }
 }
}

...ntermadiate Interactive Audio\TechNotes\CountObjects.cs 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;

public class CountObjects : MonoBehaviour
{
 public string nextLevel;
 public GameObject objToDestroy;
 GameObject objUI;

 // Use this for initialization
 void Start()
 {
 //look for the text object in the UI called ObjectNum
 objUI = GameObject.Find("ObjectNum");
 objUI.SetActive(false);
 objUI.GetComponent<Text>().text = (ObjectsToCollect.objects.ToString())

 + " coins left to pick up";
 }
 // Update is called once per frame
 void Update()
 {
 //convert the numbers to string and send to the text object to update
 objUI.GetComponent<Text>().text = (ObjectsToCollect.objects.ToString())

 + " coins left to pick up";

 if (ObjectsToCollect.objects == 0)
 {

 //load a new level once all objects have been picked up
 Application.LoadLevel(nextLevel);
 //destroy the chosen object once the total reaches 0
 Destroy(objToDestroy);
 objUI.GetComponent<Text>().text = "All coins collected.";

 }

 }
}

...adiate Interactive Audio\TechNotes\Footstep_Collider.cs 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

23

24

25
26
27
28
29

30

31
32
33
34
35

36
37
38
39
40
41
42
43

44
45
46
47
48

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Footstep_Collider : MonoBehaviour {

 private string colliderType;

 // Use this for initialization
 void Start () {

 AkSoundEngine.SetSwitch ("Surface_Type", "Pavement", gameObject);
 }

 // Update is called once per frame
 void Update () {

 }

 //this function dectects if there is a collision between the player
controller and a game object

 //and calls the function GetTerrainType which retairns the terrain type
that has been set in the enumaration mode of that object.

 //then it calls the PlayStepSoundMaterial method which is using a switch
stament to set the Wwise Switches.

 void OnControllerColliderHit (ControllerColliderHit col){
 if (col.gameObject.GetComponent<MaterialSwitchController>()) {

 //Store what the GetTerrainType returns and store is in the
variable collider type.

 colliderType =
col.gameObject.GetComponent<MaterialSwitchController>
().GetTerrainType ();

 }
 // calling the PlayStepSoundMaterialType function
 PlayStepSoundMaterialType();

 //print in the console the returned value of the
MaterialSwitchController

 //Debug.Log (colliderType);

 }

 void PlayStepSoundMaterialType()
 {
 //checks the content of the colliderType variable and depending on the

value of the variable we switch the surface type switch
 //group to the appropriate switch type
 switch (colliderType) {
 case "Pavement":
 AkSoundEngine.SetSwitch ("Surface_Type", "Pavement", gameObject);
 //Debug.Log (colliderType);

...adiate Interactive Audio\TechNotes\Footstep_Collider.cs 2
49
50
51
52
53
54
55
56
57
58
59
60
61
62

 break;
 case "Water":
 AkSoundEngine.SetSwitch ("Surface_Type", "Water", gameObject);
 //Debug.Log (colliderType);
 break;
 case "Sand":
 AkSoundEngine.SetSwitch ("Surface_Type", "Sand", gameObject);
 //Debug.Log (colliderType);
 break;
 }
 }

}

