
Max Torras Figuerola 40446951 IMD09136 – Interactive Audio

The Viking Village
Technical Notes

Contents
Library SFX ... 2

Environment Sound Design .. 3

Event Sound Design ... 4

Play and Stop Events .. 4

SoundBanks .. 5

Switches and Footsteps .. 5

Attenuations and Permanent Sounds .. 5

Collisions and Triggered Sounds .. 6

Characters ... 6

Interactive Music ... 7

Vertical Music .. 7

Horizontal Music .. 8

Interactive Mix ... 8

RTPC .. 8

Reverb Zones .. 8

Audio Buses .. 9

Game Engine Integration .. 10

Scripts ... 10

Video Captured Gameplay .. 10

Transcription ... 10

Max Torras Figuerola 40446951 IMD09136 – Interactive Audio

Library SFX
For importing the sounds in Wwise it has been created different type of containers
that are mentioned below and in each of these, sounds have been imported either
pressing Shift + I or in the Project tab.

Blend Container (Blends all the sounds together)

 Ambient_Day_Night
 amb_day_elements_sum
 amb_night_elements_sum

Random Container (Randomize the sounds inside)

 amb_forest_day_background_loop
 amb_forest_night_background_loop
 amb_day_elements_birds
 amb_day_elements_fauna
 amb_night_elements_atmos
 amb_night_elements_crickets
 Hero_Up
 Hero_Down
 Hero_Grass_Run
 Hero_Grass_Walk
 Hero_Sand_Run
 Hero_Sand_Walk
 Hero_Water_Run
 Hero_Water_Walk
 Hero_Wood_Run
 Hero_Wood_Walk
 Voices_Archer

Sequence Container (Plays the sounds consequently)

 Not used

Switch Container (The game will detect when they have to switch the sound)

 Hero_Jump
 Hero_Land
 Hero_Surface
 Hero_Grass_Step_Type
 Hero_Sand_Step_Type
 Hero_Water_Step_Type
 Hero_Wood_Step_Type

In Wwise we also need to create, in the GameSyncs tab, footsteps switches
classifying them in Step_Type and Surface_Type. In the first one we will add a
Run switch and a Walk Switch and in the other one we will add one for each type
of surface. Then, we need to assign this switched to every switch container

Max Torras Figuerola 40446951 IMD09136 – Interactive Audio

dragging them in the correct place. We can find this in the audio type and clicking
the switch containers.

Sound SFX (Where most of the sounds are imported. No specific feature)

Music Switch Container (For the game to detect when it is needed music)

 Music_System

Music Playlist Container (If there is more than one music and it is needed to be
played sequentially or randomly)

 Horizontal_Music
 House1
 Zone1
 Zone2

Music Segment (Where the music is going to be displayed once it is imported)

 Ambient_Horizontal
 Fantasy_Music_House
 Music_Ambient_Mix
 Battle_Flutes
 EvilHead_Tuba
 Music_Volcanic_Mix

Music Track (The music track itself)

For all the detailed sound effects, it will be attached a document at the end of the
technical notes.

Environment Sound Design

For the day – night cycle in Wwise, it has been used a blend track to mix all the
sounds from the day ambience and night ambience. Once all the sounds have
been imported, we need to create, in the Game Syncs tab, under Game
Parameters a Game Parameter and set a range between 0 and 24 simulating the
24h day. Then, in the blend tracks checking the crossfade box and locating the
Game Parameter which in this case it is been called Time_Of_Day, we can adjust
when every ambience sound it is going to play. We have to do this with both
background and elements and it is recommended to adjust in the same way both
of them.

Then, in Unity, there is a Game Object called Directional Light. We have to add
a new component and insert the Time Controller Script. If we edit the script, we

Max Torras Figuerola 40446951 IMD09136 – Interactive Audio

can control the velocity of the day passing or when it starts. We also added an
Ak Ambient Script inside the AreaSoundSources object with the ambient event.

At the end of the technical notes, all the scripts will be attached.

Event Sound Design

Play and Stop Events
The events are used to notice the sounds and target which sounds are needed
in Unity. When an Event is created, it is suggested to create different Work Units
to classify each one. In this case, there are four Work Units.

It has been used two different parameters in events. The first one is the Play
event which will play the sound attached to it when it is required. It has been used
the Stop event which stops the target chosen.

Below will be displayed which events have been created and what sounds are
attached to them. (Event Name (Event) – Sound Attached).

 Ambient
o Play_Ambient_day_night (Play) – Ambient_Day_Night
o Stop_Ambient_day_night (Stop) – Ambient_Day_Night

 Character
o Play_Footstep (Play) – Hero_Surface
o Play_Footsteps2 (Play) – Hero_Surface
o Play_Jump (Play) – Hero_Up
o Play_Jumps2 (Play) – Hero_Up
o Play_Land (Play) – Hero_Down
o Play_Lands2 (Play) – Hero_Down

 Music
o Play_Music (Play) – Music_System
o Stop_Music (Stop) – Music_System

 SFX
o Play_Danger (Play) – heart_beat
o Play_Destroy (Play) – end_game
o Play_Magic (Play) – magical_sound
o Play_PickUp (Play) – collect_item
o Play_torch_sounds (Play) – BAS_amb_torch
o Play_Voices (Play) – Voices_Archer
o Play_water_sounds (Play) – Lake_Shore_Waves
o Play_Welcome (Play) – Paladin3
o Stop_Danger (Stop) – heart_beat

Max Torras Figuerola 40446951 IMD09136 – Interactive Audio

o Stop_Magic (magical_sound)

SoundBanks
Once all the events are created, we have to create SoundBanks and insert each
event inside the SoundBanks renamed accordingly to each work unit. If all the
SoundBanks are fulfilled, we can save the project and press Shift + B to generate
the SoundBanks, so they can be used in Unity. Select all the Banks we need to
generate and click generate selected.

If all this is done, we can go to Unity and add an Empty Game Object that it is
going to be called SoundBanks. Here, we can add components called Ak Bank
Script and insert on the Bank Name, all the SoundBanks. It is necessary to add
a different component every time we want to add a different SoundBank. Once
all the SoundBanks are in Unity, we can switch to the FPSController to start
adding scripts.

Every time it is changed something in Wwise and it needs to be implemented in
Unity, the project has to be saved and SoundBanks have to be generated
pressing Shift + B

Switches and Footsteps
The first script we need to add is the FirstPersonController. If we edit the script
we can locate, were we need to add this line: AKSoundEngine.PostEvent
(“Event”, gameObject); We will need to add this three times, one for footsteps,
one for jumping if we needed and one for landing. Once the lines are added, we
can save the script and close the tab. We also added an AK Switch script for
every different footstep that we have (In this case we have 8 in total, Run and
Walk for every kind of surface). Then, we just need to select all the switches (One
on each script). Then, we need to select one by one, all the surface the character
will step on, and add a script called Material Switch Controller. We can edit it to
change the name of the surfaces to match the ones we named in Wwise and
choose which terrain it is every object.

When all the surface is linked, we can add a script in the FPSController named
Footsep_Collider which will simply detect when the Character collides with the
surface. Inside this script we also need to change the names to match the names
with Wwise.

Attenuations and Permanent Sounds
After that, we can start adding specific sounds for objects such torches, water,
magical sounds or dangerous heart beats. If we start with the torches, we need
to go torch by torch adding and Ak Ambient Script and choosing the
correspondent event.

This sounds have an attenuation parameter which is used to decrease the volume
the further you are. We did this in Wwise in the ShareSets tab, under the
attenuations folder, adding a named attenuation and then in the torch sound in
the positioning tab, under attenuation we just selected the attenuation that we

Max Torras Figuerola 40446951 IMD09136 – Interactive Audio

need. To edit the distance, we just clicked edit and we can adjust the distance or
any other parameter needed.

For the water sounds, we created two Empty Game Objects and we just added
an Ak Ambient Script with the water sounds event. We located the game objects
in different positions so we can hear the sea from a wider range. Water sounds
also have attenuation but, in this case, the distance is bigger, but we followed the
same steps as before.

Collisions and Triggered Sounds
We can also use other sounds that will only trigger when the player is near them.
To do this, we need to add an object, in this project, it has been used 4 different
object that will trigger sounds when the player is near them. For each one of these
objects, we need to add a script called Distance to Checkpoint inside the
FPSController. (We can’t use the same one for each object so we need to
duplicate them and edit it so the public class matches with the name of the script.)
We have the option to choose the object that will have the central point of the
sound. In this case, it is used a Bear Statue that will trigger the magical sound
when the player is quite near and the frequency will decrease as the player
approaches the object. In the Bear Statue object, we added two Ak Ambient
Scripts, one used to Play the sound, selecting to trigger on when it the player
enters a sphere collider quite big, and another Ak Ambient script to Stop the
sound when the Player leaves the area. We selected the event name
correspondent. Another object used is a stone with a thrust sword and we did the
same process as before, just changing which sound will play, in this case, the
heartbeat, increasing the rate when the Player is approaching the stone.

The other two Distance to Checkpoints are used in music and they will be
explained below.

The FPSController does not have more scripts so we can start with objects to
collect. It has been added 8 different skulls all around the map with a red light
coming from them so they can be detected. Each of them has an Ak Ambient
script with the Ak Ambient Trigger on and playing the pickup sound. It is added
also an Objects to Collect script so it will detect this object as a one that it is
needed to be collected and it will disappear after the player touches it. This it is
been done 8 times in total so we have eight items to collect.

After that, an Empty Object is been created renamed as EventSystem, and it is
added a Count Objects Script where it can be chosen a next level, in this case, it
is been chosen a room, where the game ends, and an object can be destroyed.
In this project it is destroyed a Shed and it triggers a sound using the Ak Ambient
Script, triggering on when it is destroyed. If the script is edited, the text that will
be displayed in the screen when the game is played, can be changed.

Characters
It is been added also some other characters to make the village alive, and it is
added an archer called Erika using Mixamo website and importing the character
and some animation in unity. In this case, is used a walking in circles animation.

Max Torras Figuerola 40446951 IMD09136 – Interactive Audio

Once the character is in place, it can be used the same method used with the
objects with sound, so it can be added a sphere collider, checking the “Is trigger”
box and it can be added a mesh collider so the player can not go through the
character. If the character needs some phrases or words, they can be added by
using again and Ak Ambient Script. In Erika it is used the Play_Voices event.
Another character is implemented in the game, and it is a Paladin in front of the
front door with an idle animation so he is not static. A phrase it is been recorded
so when the player approaches the Paladin, he explains what the player needs
to do.

All the scripts will be available at the end of the technical notes

Interactive Music
Before starting with vertical or horizontal music, is required to create some states
in the Game Syncs tab. The game will need one for each Music Playlist, no matter
if it is vertical music or horizontal. To do this, it is necessary a new state group,
and inside of it, create different states renamed the same as our Playlist
containers. Then, on the audio track, if the Music System is selected, paths can
be added so this is what it is mandatory to do it, one for each state.

Vertical Music
For the vertical music it is been used two ways to implement them, one for just a
single track and another to randomize different tracks in the same space. In
Wwise, it has been created inside the Music System two different track Playlist
containers. In the first one it is just added a single track but it is imported inside a
music segment. This segment, once the track is in it, has to be implemented in
the Playlist Container named, in this case, Zone1. To do that, it is necessary to
use the Interactive Music layout which can be selected pressing F10 or going to
the Layouts tab. Once there, under the General Setting, if Zone1 is selected, can
be added a New Group and inside Sequence Continuous can be chosen the
Music Segment. The sequence continuous can be changed to other parameters
but this is used in the next vertical music playlist. It is created another Playlist
called Zone2 where three tracks have been implemented and, because the
Interactive Music layout is active, the Music segments can be inserted in a new
group but, this time. It is used a Random Continuous so the three tracks will be
played randomly. After all the tracks are imported, in the Music System switch
container, and with the Interactive Music Layout selected, the playlist containers
must be dragged in their correspondent path where the object column is. This it
can be done either dragging the playlist or choosing the patch via the three dots
on the right of each path.

To implement this into Unity, a GameObject has to be created called
MusicSystem and inside it can be created, in this project, two new game objects,
one called MusicZone1 and the other one MusicZone2. Both of them will need a
Box collider with the trigger option selected and an Ak State Script triggering on
when entering and the correspondent state for each zone. The MusicZone1 will
need an Ak Ambient Script so Music will be played when the game starts.

Max Torras Figuerola 40446951 IMD09136 – Interactive Audio

Horizontal Music
The horizontal music is quite similar to the vertical one but it has a huge different
which is that music will change depending on when the player is. In this project,
this is used twice. In the first one, back in Wwise, it is created a new playlist
container with a music segment and inside it three tracks are imported. Before
doing any modification, a Game Parameter is created named Music_Tension with
a fifty range. Once this is done, it will be implemented this game parameter in
every track and this can be done clicking the track and going to the RTPC track.
Under the graphic, if the two arrows are selected the Voice Volume option can be
chosen and also the Game Parameter. After, it is time to adjust the game
parameter using the graphic above. This is used in all three different tracks just
changing the distance from the player where it can be heard.

The other horizontal music is quite different because it only has one track but the
process is similar because it is also implemented a game parameter called
HouseMusic. This time, the RTPC it is not in a linear line but in a logarithmic curve
so the effect is more realistic. After this, it has to be done the same as before,
adding the segments in a new group inside the playlists and creating two paths
for the horizontal music and for the House Music and adding the playlists track
inside the paths.

After generating the SoundBanks and jumping back to Unity it can be created two
Game Objects with a box collider with the trigger box selected and an Ak State
script triggering it when entering and the State Name using the different horizontal
music created for each game object. For the horizontal music zone, which will be
located over a mountain with a tower on top, the FPSController will need another
Distance to Checkpoint and now it will be selected the ruined tower so when the
player approaches it the music will start playing, and as near the tower the player
is, music will sound louder and instruments will come in. Another Distance to
Checkpoint is necessary and now a house where the Game Object with the
House state is has to be selected so, again, when the player is near this house,
some music will start playing, simulating it comes from inside the house.

Interactive Mix
RTPC
RTPC stands for Real Time Parameter Controller and they have been
implemented before explaining their use and how do they work but, to summarize,
the RTPC are used to control different parameters such distance which is the
only one used in this project and this can be used to decrease volume or change
other parameters when the player is approaching or leaving.

Reverb Zones
Wwise also has a Master-Mixer so buses can be added and, in fact, there are
two different buses that can be added. One is the Auxiliar Bus, which is the one
it is used now, and the other one is the Audio Bus, which will be explained how it
has been implemented after. The Auxiliar bus used in this project is for a reverb
effect in a specific zone so it is created an auxiliar bus and in the effects tab, it
has been implemented a Wwise RoomVerb, very subtle, for when the player will

Max Torras Figuerola 40446951 IMD09136 – Interactive Audio

enter the ruined tower. It is chosen an exterior preset for it. To implement this into
Unity, the Ruined Tower has to be selected and it is necessary to add a capsule
collider (to match the tower shape), and an Ak Environment Script where it can
be selected the AuxBus. The capsule collider trigger box needs to be selected to
be sure it will work.

Audio Buses
Audio buses are a longer process but are very useful to control different tracks at
the same volume. It can be created as many Audio Buses as wanted and, in this
project, there are 5 different Buses with tracks inside of them. All the buses,
including the auxiliar one, are inside a Master Audio Bus. To insert the tracks or
the containers inside each bus, it has to be selected the container it is wanted to
be sent to the bus, and on the output bus, in General Settings, just path it to the
bus wanted.

 Ambient Bus
o Ambient_day_night

 Character Bus
o Hero_Jump
o Hero_Land
o Hero_Surface

 MusicBus
o Music_System

 SFXBus
o BAS_amb_torch
o collect_item
o end_game
o heart_beat
o Lake_Shore_Waves
o magical_sound

 VoiceBus
o Voices_Archer
o Paladin3

Once all the tracks and containers are in the busses wanted if it is pressed F8 or,
in the layout tab it is selected the mixer layout, it can be created a new mix session
just selecting the two arrows on the top. Once the mix session is named, it is
recommended to create a Soundcaster (below the Mixing Desk) with the same
name. Once both are created, for example, under the Bus_Mix and Bus_Cast
names, all the busses can be dragged in both spaces so they can be controlled
all together. It can be also dragged the Master Audio Bus to control everything.
In this project, this process it is been done 5 times, to control: Bus, Character,
Ambient, Music and SFX. This is helpful to level every sound so there is none
louder or quieter.

In this project it is not used the auto-ducking but it is worth it to know how it works
because it is similar to Side-Chain in another DAWs because it lows the level
when another sound is playing.

Max Torras Figuerola 40446951 IMD09136 – Interactive Audio

Game Engine Integration
Scripts
A lot of scripts are used in the unity and they are explained during the technical
notes but as said before, all the scripts will be attached at the end of this
document.

Video Captured Gameplay
After all the details polished and touch up some things that need some changes
or some improvements in the sound, the video gameplay is captured with OBS
recorder and then a Voice Over using ProTools and a NT1-A Microphone. The
computer where is recorded is not the best at all, and there are a lot of problems
with player movement because the PC is really bad. It is done the best way and
it has been recorded multiple times until the final one which is the cleanest. It is
not the best quality but it is the best it can be done in this situation. Sorry for the
inconveniences.

The blog is created inside my own webpage where I post all my projects, either if
they are from university or personal projects, and I just wanted to attach this
project inside the web.

BlogSite

Transcription
Also, here it is the transcribed text from the video:

Hello, I’m Max, and this is my Interactive Audio Project, integrating Wwise and
Unity. It is midnight so we can here some hostile animals in the forest. And before
entering we can see we are coming from a tent outside the village.

This knight, introduce us what we have to look for inside the village and on the
top-left of the screen we can see that we have 8 skulls left to pick up. As we can
see, while we hear the waves on the shore, we have 2 skulls right in front of the
front door and the sound used is a neutral sound because I did not want to use a
bright sound to pick up skulls.

Also, as we heard before, this woman has four different introducing phrases that
will play randomly. The day is starting and the sun is rising so we can start hearing
the sound of the birds and other animals in the nature

If we talk about the character steps, we will hear four different kind of steps which
are, wood steps, sand steps, grass steps, and water steps, which we will hear
later on. We can also hear when the player jumps and lands, with for different
sounds for each one. Still talking about the character, each surface has 8 different
footsteps sounds, 4 for walking and 4 for jumping, which are a little bit faster. It is
worth mentioning that mostly every surface has its own surface change.

If we listen carefully, each torch has it’s own sound at you will hear them louder
as near as you are from one torch.

Max Torras Figuerola 40446951 IMD09136 – Interactive Audio

Here I have some problems, but when we pass this point, as we can hear, another
music will play because we are entering another part of the village.

Music stops abruptly here, and I could not fix this problem, but we hear a calm
song instead. We also hear a weird but magical sound that we don’t know where
it comes from. But when we are approaching the bear, we notice the frequencies
are going higher. And we pick up our 5th skull. 3 to go.

At this point, my character starts doing weird stuff, and I could not fix it, but it
depends on the gameplay. It is not a box collider problem because we will see
the character will go through without any problem. We hear the music going
louder as we approach the house and we will verify that when we pass this point.
Now we can confirm the music is coming from inside the house and heartbeat
starts appearing, when we look for one of the last skulls, we will find a sword on
a rock, and our heartbeat will increase it’s rate.

Here we will here when the character starts running. This time, the woman didn’t
say anything to us because we didn’t go close enough.

Before picking up the last skull, we will have to do some unnecessary parkour
because you can walk on water. And after climbing this mountain, where you can
hear clearly all the jumping and landing sounds, which seems that the player is
doing a lot of effort, we arrive to the last skull. We can also look the entire village.
The animals start to mix with some night animals because the sun is setting. And
when we enter the ruined tower, we can take the last skull.

Finally, you heard a phone ringing, and that is because it simulates that the
person playing the Viking village is inside a virtual reality, and he stops playing,
inside the game.

Clip Name Source Details Location in Wwise Edits Mixing RTPC

1_Choir Choir Singing
Music_Tension: Voice Volume
going from +6,0 dB to -200 dB
in 40 units distance

2_Sitar Sitar playing
Music_Tension: Voice Volume
going from +6,0 dB to -200 dB
in 14 units distance

3_BigPno Piano playing
Music_Tension: Voice Volume
going from +6,0 dB to -200 dB
in 25 units distance

Fantasy_Music_House FreeMusicArchive Guitar song Music_System/ House1/ Music_House
Wwise Parametric
EQ: Low Pass
Filter_20 kHz

HouseMusic: Voice Volume
going from 2,5 dB to -200 dB in
50 units distance

Music_Ambient_Mix
Given by John

McGowan
Tense Music

Music_System/ Zone1/
Music_Ambient_Mix

Volume: -6 dB

Battle_Flutes Calm Music
EvilHead_Tuba Battle Music
Music_Volcanic_Mix Epic Music

Given by John
McGowan

Music_System/ Horizontal_Music1/
Ambient_Horizontal

Given by John
McGowan

Music_System/ Zone2/
Music_Ambient_Mix

Music Work Unit

Clip Name Source Details Location in Wwise Edits Mixing RTPC

vo_archer_hello1
vo_archer_hello2
vo_archer_hello3
vo_archer_hello4

BAS_amb_torch
Given by John
McGowan

Torch burning

Torch_Attenuation:
Output volume
decreasing from
distance 0,0 to 15,0 in
a Logarithmic(Base 3)
curve

collect_item Someone picking an object
end_game A telephone ringing Volume: -11 dB

heart_beat Heart beating
Wwise Time Stretch
112-47

Danger: Range
50-0

Lake_Shore_Wave Sea waves sound in the shore

Water_attenuation:
Outpus volume
decreasing from
distance 0,0 to 50,0 in
a Logarithmic(Base 3)
curve
Volume: -5 dB

magical_sound mysterious sound Volume: -5 dB
Wwise Flanger:
Flanging/Deep. LFO
Frequency 20 - 0,002

Magic: Range 50-
0

Paladin3
Recorded myself with
H2n Zoom

Welcome phrase

Wwise Parametric EQ:
Static_Sibilance_Remov
er_Male
Wwise_Pitch_Shifter:
Octave_Down

SFX

Freesound.org

Given by John
McGowan

Women saying hello in different
ways

Voices_Archer Volume: -5 dBFreesound.org

SFX Work Unit

Clip Name Source Details Location in Wwise Edits Mixing

Jumps
Jumps_01
Jumps_02
Jumps_03
Land_01
Land_02
Land_03
Land_04
Land_05
Footsteps_Grass
Footsteps_Grass_01
Footsteps_Grass_02
Footsteps_Grass_03
Footsteps_Grass_04
Footsteps_Grass_05
Footsteps_Grass_06
Footsteps_Grass_07
Footsteps_Sand
Footsteps_Sand_01
Footsteps_Sand_02
Footsteps_Sand_03
Footsteps_Sand_04
Footsteps_Sand_05
Footsteps_Sand_06
Footsteps_Sand_07
Footsteps_Water
Footsteps_Water_01
Footsteps_Water_02
Footsteps_Water_03
Footsteps_Water_04
Footsteps_Water_05
Footsteps_Water_06
Footsteps_Water_07
Footsteps_Wood
Footsteps_Wood_01
Footsteps_Wood_02
Footsteps_Wood_03
Footsteps_Wood_04
Footsteps_Wood_05
Footsteps_Wood_06
Footsteps_Wood_07

All my recordings are recorded using a H2n Zoom handy recorder

Wood planks in "Sant
Feliu del Racó", near

Barcelona

Footsteps in a woody surface
on exterior

Hero_Surface/ Hero_Wood_Step_Type/
Hero_Wood_Run

Hero_Surface/ Hero_Wood_Step_Type/
Hero_Wood_Walk

Volume: -11 dB

Freesound.org Footsteps in a sandy surface

Hero_Surface/ Hero_Sand_Step_Type/
Hero_Sand_Run

Hero_Surface/ Hero_Sand_Step_Type/
Hero_Sand_Walk

Volume: -6 dB

Freesound.org
Footsteps in a swamp

simulating when you walk on
water

Hero_Surface/ Hero_Water_Step_Type/
Hero_Water_Walk

Hero_Surface/ Hero_Water_Step_Type/
Hero_Water_Run

Volume: -14 dB

Park called "Parc de
la Oreneta" in

Barcelona
Footsteps in a grassy surface

Hero_Surface/ Hero_Grass_Step_Type/
Hero_Grass_Run

Hero_Surface/ Hero_Grass_Step_Type/
Hero_Grass_Walk

Low-Pass filter: 29
High-Pass filter: 36

Low-Pass filter: 29
High-Pass filter: 36

Simulating a jump effort sound Hero_Jump/Hero_Up

H2n Zoom recording
my voice

Simulating when you land from
a place

Hero_Land/Hero_Down

Character Work Unit

Clip Name Source Details Location in Wwise Edits

amb_forest_day_background
Forest ambience with some
birds in the background

Ambient_day_night/
amb_forest_dat_background_loop

Volume: -9 dB

amb_forest_night_background
Forest ambience at night with
crickets and wind

Ambient_day_night/
amb_forest_night_background_loop

Volume: - 14 dB

amb_day_element_02_01 Bird sound
amb_day_elements_sum/
amb_day_elements_birds

amb_day_element_02_02 Bird sound
amb_day_elements_sum/
amb_day_elements_birds

amb_day_element_02_03 Bird sound
amb_day_elements_sum/
amb_day_elements_birds

amb_day_element_02_04 Bird sound
amb_day_elements_sum/
amb_day_elements_birds

amb_day_element_01_01 Tree branch getting broke
amb_day_elements_sum/
amb_day_elements_fauna

amb_day_element_01_02 Tree branch getting broke
amb_day_elements_sum/
amb_day_elements_fauna

amb_day_element_01_03 Tree branch getting broke
amb_day_elements_sum/
amb_day_elements_fauna

amb_night_element_03_01 Howling wolf
amb_night_elements_sum/
amb_night_elements_atmos

amb_night_element_03_02 Some animal screaming
amb_night_elements_sum/
amb_night_elements_atmos

amb_night_element_03_03 Animal doing sounds
amb_night_elements_sum/
amb_night_elements_atmos

amb_night_element_03_04 Some animal screaming
amb_night_elements_sum/
amb_night_elements_atmos

amb_night_element_01_01 Cricket sound
amb_night_elements_sum/
amb_night_elements_crickets

amb_night_element_01_02 Cricket sound
amb_night_elements_sum/
amb_night_elements_crickets

amb_night_element_01_03 Cricket sound
amb_night_elements_sum/
amb_night_elements_crickets

amb_night_element_01_04 Cricket sound
amb_night_elements_sum/
amb_night_elements_crickets

Added a Wwise Silence in every group of elements with a 5 seconds durantion by default and randomizing it betweem 2 and 6,5
secs.

Ambient Work Unit

Given by John
McGowan

Pitch randomizer between -51
and 101

Volume: -9 dB

Volume -11 dB

Volume: +12 dB

...Practical_Skeleton_Files\Assets\Scripts\CountObjects.cs 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;

public class CountObjects : MonoBehaviour
{
 public string nextLevel;
 public GameObject objToDestroy;
 GameObject objUI;

 // Use this for initialization
 void Start()
 {
 //look for the text object in the UI called ObjectNum
 objUI = GameObject.Find("ObjectNum");
 }
 // Update is called once per frame
 void Update()
 {
 //convert the numbers to string and send to the text object to update
 objUI.GetComponent<Text>().text = (ObjectsToCollect.objects.ToString())

 + " Skulls left to pick up";

 if (ObjectsToCollect.objects == 0)
 {

 //load a new level once all objects have been picked up
 Application.LoadLevel(nextLevel);
 //destroy the chosen object once the total reaches 0
 Destroy(objToDestroy);
 objUI.GetComponent<Text>().text = "All objects collected.";

 }

 }
}

...tical_Skeleton_Files\Assets\Scripts\ObjectsToCollect.cs 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class ObjectsToCollect : MonoBehaviour
{
 public static int objects = 0;
 // Use this for initialization
 // let the count objects script know that this object is
 // part of the collection and should be counted
 void Awake()
 {
 objects++;
 }

 // Update is called once per frame
 void OnTriggerEnter(Collider plyr)
 {
 //if the tagged FPSController 'Player' collides with an object, take it

 away from the total
 if (plyr.gameObject.tag == "Player")
 objects--;
 gameObject.SetActive(false);
 }
}

...l_Skeleton_Files\Assets\Scripts\DistanceToCheckpoint.cs 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

16

17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityStandardAssets.CrossPlatformInput;
using UnityStandardAssets.Utility;
using Random = UnityEngine.Random;

public class DistanceToCheckpoint : MonoBehaviour
{
 // Reference to checkpoint position
 [SerializeField]
 private Transform checkpoint;

 //Serialization is the process of taking an object in ram (classes, fields,
 etc...)

 //and making a disk representation of it which can be recreated at any
point in the future.

 // Calculated distance value
 private float distance;

 // Update is called once per frame
 void Update ()
 {
 // calculate distance value between character and checkpoint
 distance = (checkpoint.transform.position -

transform.position).magnitude;

 // set parameter from Wwise game parameter to scaled distance value
 AkSoundEngine.SetRTPCValue("Magic", distance);

 //Debug.Log(message: "Distance to checkpoint is " + distance);

 }
}

...ical_Skeleton_Files\Assets\Scripts\Footstep_Collider.cs 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

23

24

25
26
27
28
29

30

31
32
33
34
35

36
37
38
39
40
41
42
43

44
45
46
47
48

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Footstep_Collider : MonoBehaviour {

 private string colliderType;

 // Use this for initialization
 void Start () {

 AkSoundEngine.SetSwitch ("Surface_Type", "Grass", gameObject);
 }

 // Update is called once per frame
 void Update () {

 }

 //this function dectects if there is a collision between the player
controller and a game object

 //and calls the function GetTerrainType which retairns the terrain type
that has been set in the enumaration mode of that object.

 //then it calls the PlayStepSoundMaterial method which is using a switch
stament to set the Wwise Switches.

 void OnControllerColliderHit (ControllerColliderHit col){
 if (col.gameObject.GetComponent<MaterialSwitchController>()) {

 //Store what the GetTerrainType returns and store is in the
variable collider type.

 colliderType =
col.gameObject.GetComponent<MaterialSwitchController>
().GetTerrainType ();

 }
 // calling the PlayStepSoundMaterialType function
 PlayStepSoundMaterialType();

 //print in the console the returned value of the
MaterialSwitchController

 //Debug.Log (colliderType);

 }

 void PlayStepSoundMaterialType()
 {
 //checks the content of the colliderType variable and depending on the

value of the variable we switch the surface type switch
 //group to the appropriate switch type
 switch (colliderType) {
 case "Grass":
 AkSoundEngine.SetSwitch ("Surface_Type", "Grass", gameObject);
 //Debug.Log (colliderType);

...ical_Skeleton_Files\Assets\Scripts\Footstep_Collider.cs 2
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

 break;
 case "Wood":
 AkSoundEngine.SetSwitch ("Surface_Type", "Wood", gameObject);
 //Debug.Log (colliderType);
 break;
 case "Water":
 AkSoundEngine.SetSwitch ("Surface_Type", "Water", gameObject);
 //Debug.Log (colliderType);
 break;
 case "Sand":
 AkSoundEngine.SetSwitch ("Surface_Type", "Sand", gameObject);
 //Debug.Log (colliderType);
 break;

 }
 }

}

...eleton_Files\Assets\Scripts\MaterialSwitchController.cs 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class MaterialSwitchController : MonoBehaviour {

 public enum Mode {Grass, Wood, Water, Sand}
 public Mode terrainType;

 // Use this for initialization
 void Start () {

 }

 // Update is called once per frame
 void Update () {

 }

 public string GetTerrainType(){

 string typeString = "";

 switch (terrainType) {

 case Mode.Grass:
 typeString = "Grass";
 break;
 case Mode.Wood:
 typeString = "Wood";
 break;
 case Mode.Water:
 typeString = "Water";
 break;
 case Mode.Sand:
 typeString = "Sand";
 break;

 }

 return typeString;
 //Debug.Log (typeString);
 }
}

...s\FirstPersonCharacter\Scripts\FirstPersonController.cs 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25

26
27

28

29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

using System;
using UnityEngine;
using UnityStandardAssets.CrossPlatformInput;
using UnityStandardAssets.Utility;
using Random = UnityEngine.Random;

namespace UnityStandardAssets.Characters.FirstPerson
{
 [RequireComponent(typeof (CharacterController))]
 [RequireComponent(typeof (AudioSource))]
 public class FirstPersonController : MonoBehaviour
 {
 [SerializeField] private bool m_IsWalking;
 [SerializeField] private float m_WalkSpeed;
 [SerializeField] private float m_RunSpeed;
 [SerializeField] [Range(0f, 1f)] private float m_RunstepLenghten;
 [SerializeField] private float m_JumpSpeed;
 [SerializeField] private float m_StickToGroundForce;
 [SerializeField] private float m_GravityMultiplier;
 [SerializeField] private MouseLook m_MouseLook;
 [SerializeField] private bool m_UseFovKick;
 [SerializeField] private FOVKick m_FovKick = new FOVKick();
 [SerializeField] private bool m_UseHeadBob;
 [SerializeField] private CurveControlledBob m_HeadBob = new

CurveControlledBob();
 [SerializeField] private LerpControlledBob m_JumpBob = new

LerpControlledBob();
 [SerializeField] private float m_StepInterval;
 [SerializeField] private AudioClip[] m_FootstepSounds; // an array

of footstep sounds that will be randomly selected from.
 [SerializeField] private AudioClip m_JumpSound; // the sound

 played when character leaves the ground.
 [SerializeField] private AudioClip m_LandSound; // the sound

 played when character touches back on ground.

 private Camera m_Camera;
 private bool m_Jump;
 private float m_YRotation;
 private CameraRefocus m_CameraRefocus;
 private Vector2 m_Input;
 private Vector3 m_MoveDir = Vector3.zero;
 private CharacterController m_CharacterController;
 private CollisionFlags m_CollisionFlags;
 private bool m_PreviouslyGrounded;
 private Vector3 m_OriginalCameraPosition;
 private float m_StepCycle;
 private float m_NextStep;
 private bool m_Jumping;
 private AudioSource m_AudioSource;

 // Use this for initialization
 private void Start()
 {
 m_CharacterController = GetComponent<CharacterController>();
 m_Camera = Camera.main;
 m_OriginalCameraPosition = m_Camera.transform.localPosition;

...s\FirstPersonCharacter\Scripts\FirstPersonController.cs 2
52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102

103

 m_CameraRefocus = new CameraRefocus(m_Camera, transform,
m_Camera.transform.localPosition);

 m_FovKick.Setup(m_Camera);
 m_HeadBob.Setup(m_Camera, m_StepInterval);
 m_StepCycle = 0f;
 m_NextStep = m_StepCycle/2f;
 m_Jumping = false;
 m_AudioSource = GetComponent<AudioSource>();
 m_MouseLook.Init(transform , m_Camera.transform);
 }

 // Update is called once per frame
 private void Update()
 {
 RotateView();
 // the jump state needs to read here to make sure it is not missed
 if (!m_Jump)
 {
 m_Jump = CrossPlatformInputManager.GetButtonDown("Jump");
 }

 if (!m_PreviouslyGrounded && m_CharacterController.isGrounded)
 {
 StartCoroutine(m_JumpBob.DoBobCycle());
 PlayLandingSound();
 m_MoveDir.y = 0f;
 m_Jumping = false;
 }
 if (!m_CharacterController.isGrounded && !m_Jumping &&

m_PreviouslyGrounded)
 {
 m_MoveDir.y = 0f;
 }

 m_PreviouslyGrounded = m_CharacterController.isGrounded;
 }

 private void PlayLandingSound()
 {
 //m_AudioSource.clip = m_LandSound;
 //m_AudioSource.Play();
 //m_NextStep = m_StepCycle + .5f;
 AkSoundEngine.PostEvent ("Play_Lands2", gameObject);
 }

 private void FixedUpdate()
 {
 float speed;
 GetInput(out speed);
 // always move along the camera forward as it is the direction

that it being aimed at
 Vector3 desiredMove = m_Camera.transform.forward*m_Input.y +

m_Camera.transform.right*m_Input.x;

...s\FirstPersonCharacter\Scripts\FirstPersonController.cs 3
104
105

106
107

108
109

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

130
131

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150
151

152

 // get a normal for the surface that is being touched to move
along it

 RaycastHit hitInfo;
 Physics.SphereCast(transform.position,

m_CharacterController.radius, Vector3.down, out hitInfo,
 m_CharacterController.height/2f);
 desiredMove = Vector3.ProjectOnPlane(desiredMove,

hitInfo.normal).normalized;

 m_MoveDir.x = desiredMove.x*speed;
 m_MoveDir.z = desiredMove.z*speed;

 if (m_CharacterController.isGrounded)
 {
 m_MoveDir.y = -m_StickToGroundForce;

 if (m_Jump)
 {
 m_MoveDir.y = m_JumpSpeed;
 PlayJumpSound();
 m_Jump = false;
 m_Jumping = true;
 }
 }
 else
 {
 m_MoveDir +=

Physics.gravity*m_GravityMultiplier*Time.fixedDeltaTime;
 }
 m_CollisionFlags = m_CharacterController.Move

(m_MoveDir*Time.fixedDeltaTime);

 ProgressStepCycle(speed);
 UpdateCameraPosition(speed);
 }

 private void PlayJumpSound()
 {
 AkSoundEngine.PostEvent ("Play_Jumps2", gameObject);
 //m_AudioSource.clip = m_JumpSound;
 //m_AudioSource.Play();
 }

 private void ProgressStepCycle(float speed)
 {
 if (m_CharacterController.velocity.sqrMagnitude > 0 &&

(m_Input.x != 0 || m_Input.y != 0))
 {
 m_StepCycle += (m_CharacterController.velocity.magnitude +

(speed*(m_IsWalking ? 1f : m_RunstepLenghten)))*
 Time.fixedDeltaTime;

...s\FirstPersonCharacter\Scripts\FirstPersonController.cs 4
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

195
196
197

198

199
200

201
202
203
204

 }

 if (!(m_StepCycle > m_NextStep))
 {
 return;
 }

 m_NextStep = m_StepCycle + m_StepInterval;

 PlayFootStepAudio();
 }

 private void PlayFootStepAudio()
 {
 if (!m_CharacterController.isGrounded)
 {
 return;
 }

 AkSoundEngine.PostEvent ("Play_Footsteps2", gameObject);

 // pick & play a random footstep sound from the array,
 // excluding sound at index 0
 //int n = Random.Range(1, m_FootstepSounds.Length);
 //m_AudioSource.clip = m_FootstepSounds[n];
 //m_AudioSource.PlayOneShot(m_AudioSource.clip);
 // move picked sound to index 0 so it's not picked next time
 //m_FootstepSounds[n] = m_FootstepSounds[0];
 //m_FootstepSounds[0] = m_AudioSource.clip;
 }

 private void UpdateCameraPosition(float speed)
 {
 Vector3 newCameraPosition;
 if (!m_UseHeadBob)
 {
 return;
 }
 if (m_CharacterController.velocity.magnitude > 0 &&

m_CharacterController.isGrounded)
 {
 m_Camera.transform.localPosition =
 m_HeadBob.DoHeadBob

(m_CharacterController.velocity.magnitude +
 (speed*(m_IsWalking ? 1f :

m_RunstepLenghten)));
 newCameraPosition = m_Camera.transform.localPosition;
 newCameraPosition.y = m_Camera.transform.localPosition.y -

m_JumpBob.Offset();
 }
 else
 {
 newCameraPosition = m_Camera.transform.localPosition;

...s\FirstPersonCharacter\Scripts\FirstPersonController.cs 5
205

206
207
208
209
210
211
212
213
214
215
216

217
218
219
220
221
222

223

224
225
226
227
228
229
230
231
232
233
234
235
236
237

238

239
240
241

242
243
244
245
246
247
248
249
250
251
252
253

 newCameraPosition.y = m_OriginalCameraPosition.y -
m_JumpBob.Offset();

 }
 m_Camera.transform.localPosition = newCameraPosition;

 m_CameraRefocus.SetFocusPoint();
 }

 private void GetInput(out float speed)
 {
 // Read input
 float horizontal = CrossPlatformInputManager.GetAxis

("Horizontal");
 float vertical = CrossPlatformInputManager.GetAxis("Vertical");

 bool waswalking = m_IsWalking;

#if !MOBILE_INPUT
 // On standalone builds, walk/run speed is modified by a key

press.
 // keep track of whether or not the character is walking or

running
 m_IsWalking = !Input.GetKey(KeyCode.LeftShift);
#endif
 // set the desired speed to be walking or running
 speed = m_IsWalking ? m_WalkSpeed : m_RunSpeed;
 m_Input = new Vector2(horizontal, vertical);

 // normalize input if it exceeds 1 in combined length:
 if (m_Input.sqrMagnitude > 1)
 {
 m_Input.Normalize();
 }

 // handle speed change to give an fov kick
 // only if the player is going to a run, is running and the

fovkick is to be used
 if (m_IsWalking != waswalking && m_UseFovKick &&

m_CharacterController.velocity.sqrMagnitude > 0)
 {
 StopAllCoroutines();
 StartCoroutine(!m_IsWalking ? m_FovKick.FOVKickUp() :

m_FovKick.FOVKickDown());
 }
 }

 private void RotateView()
 {
 m_MouseLook.LookRotation (transform, m_Camera.transform);
 m_CameraRefocus.GetFocusPoint();
 }

 private void OnControllerColliderHit(ControllerColliderHit hit)

...s\FirstPersonCharacter\Scripts\FirstPersonController.cs 6
254
255
256
257
258
259
260
261
262
263
264
265
266

267
268
269
270

 {
 Rigidbody body = hit.collider.attachedRigidbody;
 //dont move the rigidbody if the character is on top of it
 if (m_CollisionFlags == CollisionFlags.Below)
 {
 return;
 }

 if (body == null || body.isKinematic)
 {
 return;
 }
 body.AddForceAtPosition(m_CharacterController.velocity*0.1f,

hit.point, ForceMode.Impulse);
 }
 }
}

